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Abstract 

In this paper we endeavor to explore the influence of thermal radiation on MHD 3D flow 

of a nanofluid over a linear shrinking sheet through a porous medium. With the help of similarity 

transformations, the governing non-linear partial differential equations have been converted into 

non-linear ordinary differential equations. The series solution of these reduced equations is 

obtained by using Homotopy Analysis Method (HAM). The non-dimensional velocity and 

temperature distributions have been presented graphically for various emerging parameters in 

connection with the problem. It is seen that increase in thermal radiation parameter enhances the 

fluid temperature and there by the associated thermal boundary layer thickness gets enlarged. 

Also the skin friction coefficient and Nusselt number for different pertinent parameters are 

depicted in tabular form. 
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1. Introduction 

By virtue of enormous applications in industries and engineering processes like polymer 

processing, manufacturing of plastics and metals, research on boundary layer behavior of fluid 

flow over a continuously shrinking surface keeps going on [1-2]. The pioneer studies in this area 

were first performed theoretically in [3] and later experimentally by [4]. Further these works 

were pursued in the analysis [5-8]. 

A nanofluid is a fluid possessing nanometer sized particles (1-100 nm diameters), called 

nanoparticles. The concept of nanofluid, has been advanced by Choi [9] through an innovative 

technique that uses a mixture of solid nanoparticles (Au, Ag, Cu metals, CuO, TiO2 and Al2O3) 

having higher thermal conductivity and the base fluids (conventional liquids like water, engine 

oil, toluene, ethylene glycol etc.) of lower thermal conductivity so as to develop advanced heat 
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transfer fluids with substantial augmentation of thermal conductivities. In other words, highest 

feasible thermo-physical properties at the smallest feasible concentrations can be accomplished 

by uniform dispersion and stable suspension of nanoparticles in base fluids. Xuan and Li [10] 

implemented pure copper particles in the study of convective heat transfer and flow features of 

nanofluids. They found in their study that the volume fraction, the particle dimensions and 

material properties play significant role to achieve a substantial augmentation of heat transfer 

and viscosity.   

Nanofluids are widely used in coolants for computers and nuclear reactors, cancer 

therapy, safer surgery by cooling, lubricants, heat exchangers, micro-channel heat sinks, cooling 

of a new class of super powerful and small computers and other electronic devices for use in 

military systems, vehicle cooling and transformer cooling, in designing the waste heat removal 

equipment, major process industries including materials and chemicals, oil and gas, food and 

drink, paper and printing etc. as studied in [11]. 

Recently, Hayat et al. [12] discussed the influence of magnetic field in a three 

dimensional flow of a nanofluid over a shrinking sheet in presence of convective conditions. 

However, the authors have not explored the effect of thermal radiation on a nanofluid over a 

shrinking sheet, which is discussed in the present study.    

The thermal radiation effects are of vital importance at high absolute temperature due to 

basic difference between radiation and convection and conduction energy-exchange mechanisms. 

For space applications, some devices are designed to operate at high temperature levels in order 

to obtain high thermal efficiency. That is why the radiation effects are significant while 

determining thermal effects in the processes with high temperatures. Akber et al. [13] 

investigated the effect of thermal radiation on MHD convective flow of nanofluid past a 

shrinking surface. Further, the radiation effects are studied in [14-16]. 

In this paper, Homotopy analysis method is employed to study the effects of nanoparticle 

volume fraction ( ), magnetic parameter (M), permeability parameter ( pK ), shrinking parameter 

(A), wall mass transfer parameter (
wf ), Prandtl number (

rP ), radiation parameter (R) on velocity 

and temperature fields for nanofluids using the thermo physical properties of the base fluid (pure 

water) and different nanoparticles (kindly see Table 1). To the best of knowledge of the author, 

yet no attempt has been made to reveal the MHD 3D flow of nanofluid past a shrinking surface 

with thermal radiation effect.   
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Nomenclature 

( , , )u v w  velocity components along (x, y, z) directions 

nf  kinematic viscosity of nanofluid 
rq  radiative heat flux  

  electrical conductivity   
0B  strength of uniform magnetic field 

nf  density of nanofluid    
*

pK  dimensional permeability parameter 

nf  thermal diffusivity of nanofluid  p nf
c heat capacitance of nanofluid 

W wall mass transfer velocity  fC  skin friction coefficient   

, ,a c m  constants    *  Boltzmann constant 

h  heat transfer coefficient  T  temperature 

fT  temperature of fluid   T
 free stream temperature 

  nanoparticle volume fraction  f  density of the fluid   

s  density of the solid   nf  dynamic viscosity of nanofluid 

f  dynamic viscosity of fluid  nfk  thermal conductivity of nanofluid  

 p f
C heat capacitance of fluid   p s

C  heat capacitance of solid 

sk  thermal conductivity of solid  f  non-dimensional stream function    

f   non-dimensional velocity    similarity variable 

1k  mean absorption coefficient  A  shrinking parameter 

M  magnetic parameter   pK  non-dimensional permeability parameter 

rP  Prandtl number   fk  thermal conductivity of fluid 

R  radiation parameter   
wf  wall mass transfer parameter 

iB  Biot’s number    Rex
 local Reynolds number   

xNu  local Nusselt number    

Subscripts 

nf nanofluid 

f fluid 

s solid 

Greek Symbols 

, , ,nf f                    

The objective of the present study is an extension work of Hayat et al. [12]. In the present 

study, the author has investigated the effect of thermal radiation on the MHD flow and heat 

transfer of a nanofluid past a permeable shrinking surface through a porous medium by 

considering nanofluid model-I proposed by Mahdy [17]. 
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2. Formulation of the problem 

Consider a steady three dimensional electrical conducting nanofluid over a shrinking 

surface. Assume that a uniform transverse magnetic field of strength 
0B  is imposed parallel to 

the z-axis. Also the induced magnetic and electric fields are assumed to be neglected. The 

convective boundary conditions are implemented in the heat transfer process. The governing 

equations are 

0
u v w

x y z

  
  

  
          (1) 

22

0

2

nf

nf *

nf nf p

B uu u u u u
u v w

x y z z K

   
    

   




 
      (2)
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0

2

nf

nf *

nf nf p

B vv v v v v
u v w

x y z z K

   
    

   




 
      (3) 

2

2nf

T T T T
u v w

x y z z

   
  

   
  

 
1 r

p nf

q

zC





      (4) 

subject to the boundary conditions 

 

 

 

1

0

0 0

f f

u ax,v a m y,w W ,

T
k h T T at z

z

u ,v ,T T as z

    



    
 

   

       (5) 

where 0a   for shrinking sheet. The sheet shrinks along x-direction only when m = 1 and that 

shrinks axi-symmetrically for m = 2. The boundary condition (5) signifies that the sheet shrinks 

with uniform velocities and the sheet involves the constant wall mass transfer velocity. It also 

signifies that convective heat transfer takes place at the boundary surface. It determines the 

temperature gradient and heat transfer rate at the boundary surface in the flow system as  

considered by Hayat et al.[12,18].  Here h is the convective heat transfer coefficient and 
fT  is the 

convective fluid temperatue. 
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Vv=b(1-m)yyy

Xx

Zz

Uu=ax  

Fig.1 Flow Geometry 

The characteristic parameters of the nanofluid [17] are defined as 

 (1- )nf s              (6) 

 
2.5(1- )

f

nf





           (7) 

 
( )

nf

nf

p nf

k

C



          (8) 

 ( ) (1- )( ) ( )p nf p f p sC C C             (9) 

 
 
 

2 2

2

s f f snf

f s f f s

k k k kk

k k k k k





  


  
        (10) 

Introducing the variables [12] 

       

 

1 f

f f

u cxf ,v c m y f ,w c .m. f

T Tc
z,

T T

   

  






     



  
 

    (11) 

Equation (1) is satisfied by the velocity components (u, v, w) indicating that the fluid 

flow is feasible. Here c > 0. 

The radiative heat flux using Rosseland approximation [19] is given by  

4

1

4

3

*

r

T
q

k z

 
 


         (12) 
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 Assume that the differences in temperature within the flow are such that 4T  can be 

expressed as a linear combination of the temperature. Thus, expanding 4T  in a Taylor series 

about T  and neglecting higher order terms, we obtain 

 4 3 44 3T T T T    (13)  

Thus,  
* 3 2

2

1

16

3

rq T T

z k z

   


 
  (14) 

So, eqn. (4) becomes 

 

* 32 2

2 2

1

16

3
nf

p nf

TT T T T T
u v w

x y z z zk C

    
    

    
      (15) 

Using (6)-(11), eqns. (2), (3) and (15) take the form 

    2 5 2
1 1

. s

f

f mff f
  

         
   


  


  

2 5
1 0

.

p.A.M . f A.K . f       (16) 

 
 

1
1 0

pnf s

r f p f

ck
R mf

P k c

                
      


   


      (17) 

where  

 

2 3

0

1

16

3

*
f

p *

f p

f p f

r

f

B T
M ,K ,R ,

c cK kk

C a
P ,A

k c




   




  


 



 
       (18) 

with appropriate boundary conditions 

 1 0

0 0

w if f , f A, B at

f ' , as

       


   

  

 
      (19) 

where 
 

w

f

W
f

m c
  is the wall mass transfer parameter with 0wf  indicates mass suction and 

0wf   indicates mass injection, 
f

i

f

a h
A and B .

c k c
 


. 
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The skin friction coefficient fC  and local Nusselt number 
xNu  are determined respectively as 

 
2

w
f

f w

C
u





 and  

 x

w
u

f f

q
N

k T T




      (20) 

where 
0

w nf

z

u

z 

 
    

 
 represents the wall shear stress at the shrinking surface and 

0

w nf

z

T
q k

z 

 
   

 
 represents the wall heat flux from the shrinking surface. 

The dimensionless form of skin-friction coefficient and local Nusselt number can be 

obtained respectively as 

 
 

 
1 2

2 5

0

1
x f .

f "
Re C 


  and  1 2 0

nf

x x

f

k
Re Nu '

k




       (21)  

3. Homotopy solutions 

Let us choose the initial approximations and auxiliary linear operators for homotopy 

analysis solutions as 

   0 01
1

n i
w

i

B
f f A e , e

B

       

         (22) 

   L f f f ',L "             (23) 

The above auxiliary linear operators satisfy the following properties: 

 

 

1 2 3

4 5

0

0

L f c c e c e

L c e c e

 

 





     


     

        (24) 

including 
1c  to 

5c  as arbitrary constants. 

Following Liao [20], Abbasbandy and Shirzadi [21], the associated zeroth order 

deformation problems can be obtained as: 

        01 f f
ˆ ˆp f f , p f p N f , p       

         (25) 

        01 ˆ ˆp , p p N , p                     (26) 
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     

     

0 0 0

0 1 0 0

w

i

ˆ ˆ ˆf , p f , f , p A, f ' , p

ˆ ˆ' , p B , p , , p

    


          
      (27) 

where p represents an embedding parameter, f  and   are non-zero auxiliary parameters. 

The non-linear operators fN  and N  are respectively 

   
 

 
3

2 5

3
1 1

. s
f

f

f̂ , pˆ ˆN f , p , , p
 

     
 

  
               

     

    
   

2
2

2

ˆ ˆf , p f , pˆm. f , p .
    

    
     

 


 
 

 
   2 5

1
.

p

ˆ ˆf , p f , p
.A.M A.K

 
  

 

 


 
     (28) 

   
 2

2

1 nf

r f

ˆk , pˆˆN , p , f , p R
P k

  
         



 
  



 
 

 
 

1
p s

p f

ˆc , pˆmf , p
c

         
     

  
  


(29) 

 When 0p   and 1p  , we obtain 

    00f̂ , f ,     00ˆ , ,       1f̂ , f   and    1ˆ ,        (30) 

When p increases from 0 to 1,  f , p  varies from 
0 ( )f   to ( )f   and  , p   varies from 

0 ( )   to ( )  . 

With the help of Taylor’s expansion, we can obtain 

       
 
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1
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n

n
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
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





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  


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       
 

0

1
0

1
n

n

n n n
n

p

, p
, p p ,
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 
       









  


      (32) 

The convergence of the above series depends upon f  and   . Assume that f  and   

are properly chosen so that eqns. (31) and (32) converge at 1p  . So we have 

      0

1

n

n

f f f  




          (33) 
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      0

1

n

n

     




          (34) 

The general solutions can be obtained as 

     1 2 3

*

n nf f c c e c e              (35) 

     4 5

*

n n c e c e                (36) 

where *

nf  and *

n  are special functions. 

In this case the values of the constants 
1c  to 

5c  with the help of boundary conditions 

            0 0 0 0 0n n n n i n nf f f B                (37) 

can be obtained as 
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f
c
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







 








  


  

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
    
   

       (38) 

4. Convergence analysis and discussion 

The non-dimensional governing equations (16) and (17) of the flow problem have been 

solved by using Homotopy Analysis Method (HAM). The comprehensive discussion and 

diagrammatical representation of the influence of various pertinent physical parameters on 

velocity as well as temperature profiles have been incorporated in the present study. 

The HAM solutions involve the auxiliary parameters f  and 

. Hence the - curves 

for the 14th order approximations have been portrayed to obtain the range for admissible values 

of f  and 

 for the functions (0)f   and (0)  respectively. According to Figs. 2 and 3, the 

range of the admissible values of  f  and 

 are 1 0.4f     and 1 0.2     

respectively. Hence the series solution converge in the whole region of (0 )   when 

0.5f    and 0.6   .  
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Figs. 4-8 reveal the influence of the parameters , , ,pM A K   and 
wf  on velocity profiles 

of nanofluid past a shrinking surface. Let us now discuss the influence of these parameters in 

somewhat detail, one by one.  Fig. 4 is well designed to explore and reinvigorate the influence of 

M  on fluid motion. If we enhance M somewhat, then the fluid motion gets retarded. In other 

words, if there were no applied magnetic field there would no electromagnetic interaction 

between electrical conducting fluid and the magnetic field and hence retardation of velocity 

would not be seen. This is in agreement with the results of Hayat et al. [12]. Fig. 5 displays, in 

rich detail, the fact that increasing A slows down the fluid motion but the magnitude of 

deceleration is significant. Because of resistive force offered by the porous medium, the velocity 

profiles get reduced and then the momentum boundary layer shrinks as is plotted in Fig. 5. By 

looking at Fig. 7, we can say that the fluid motion is enhanced by increasing volume fraction 

parameter . Fig. 8 shows the portrayal of velocity distribution of nanofluid for suction ( 0)wf  , 

injection ( 0)wf   and impermeable surface ( 0)wf   in presence of porous matrix. In 

compliance with the findings of [12], the suction at the surface retards the velocity while the 

effect of injection is diametrical opposite to that of suction. Here is an interesting consequence of 

the combined effect of suction and porous matrix favorable to diminution of momentum 

boundary layer which in turn favors the stability of the flow.  

Figs. 9-15 portray the temperature distribution inspired by , , , , ,p w iM K f R A B  and   

respectively. In fact, had there been no M and pK , the temperature distribution could not be 

enhanced in the flow field. This means that temperature rising would not be possible without M 

and pK . Higher M and pK  enable the temperature to rise. In other words, higher values of M and 

pK  are responsible for the enhancement of temperature distribution as are sketched in Figs. 9 

and 10. This result is in conformity with the result reported earlier by Hayat et al. [12]. Hence 

thermal boundary layer is an increasing function of M  and pK each. Temperature decreases due 

to increase in suction parameter, 
wf  and as a result of it a thinner thermal boundary layer has 

been accomplished (Fig. 11). Fig.12 depicts that increasing values of radiation parameter R 

increase the fluid temperature throughout the flow domain developing the wider thermal 

boundary layer. It is for this reason that thermal radiation plays an important role in regulating 

temperature of a system and controlling the thermal boundary layers effectively. So, the thermal 
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radiation  parameter should be kept minimum to achieve a  better cooling process.  This is in 

agreement with the result claimed by Nandy and Pop [22].  

Fig. 1 32 focuses on the characteristics of fluid temperature inspired by A. It is noticed 

that increasing A decreases the fluid temperature in presence of thermal radiation. Fig. 14 

describes that enhancement of 
iB  increases the temperature, however this effect is more 

pronounced in the region contiguous to the solid surface. The early indications in Fig. 15 are the 

behavior of temperature under the influence of volume fraction parameter   where the 

temperature increases with increase in  in the entire flow domain. Therefore, the thickness of 

the temperature boundary layer gets enhanced.  

Table – 1 Thermo physical properties of water and nanoparticles. 

 3( . )kg m  
1 1( . . )pC J kg k 

 1 1( . )k W m k   5 110 ( )k  

Pure water 
2( )H O  997.1 4179 0.613 21 

Copper (Cu) 8933 385 40 1.67 

Silver (Ag) 10500 235 429 1.89 

Alumina 
2 3( )Al O  3970 765 40 0.85 

Titanium oxide 
2( )TiO  4250 686.2 8.9538 0.9 
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Fig. 2   curve for f in Cu-water nanofluid with 

0.2, 0.5, 2, 0.1, 0.1, 0.5w i pM f m A B K         . 
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Fig. 3    curve for   in Cu-water nanofluid with 

0.2, 0.5, 2, 0.1, 0.1, 0.5, 6.2, 0.5w i p rM f m A B K P R           . 
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Fig. 4 Influence of M  on velocity for 0.5, 2, 0.1, 0.1, 0.5w pf m A K       . 
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Fig. 5 Influence of A  on velocity for 0.5, 2, 0.2, 0.1, 0.5w pf m M K      . 
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Fig. 6 Influence of pK  on velocity for 0.5, 2, 0.2, 0.1, 0.1wf m M A      . 
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Fig. 7 Influence of   on velocity for 0.5, 2, 0.2, 0.5, 0.1w pf m M K A      . 
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Fig. 8 Influence of 
wf  on velocity for 0.1, 2, 0.2, 0.5, 0.1pm M K A       . 
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Fig. 9 Influence of M  on temperature for 

0.5, 0.5, 0.1, 2, 0.5, 0.1, 6.2p w i rK f A m R B P          . 
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Fig. 10 Influence of pK  on temperature for 

0.2, 0.5, 0.1, 2, 0.5 0.1, 6.2w i rM f A m R B P          . 
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Fig. 11 Influence of 
wf  on temperature for 

0.2, 0.5, 0.1, 2, 0.5 0.1, 6.2p i rM K A m R B P          . 
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Fig. 12 Influence of R  on temperature for 

0.2, 0.5, 0.1, 2, 0.5, 0.1, 6.2p w i rM K A m f B P          . 
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Fig. 13 Influence of A  on temperature for 

0.2, 0.5 2, 0.5, 0.2, 0.1, 6.2p w i rM K m f R B P         . 
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Fig. 14 Influence of 
iB  on temperature for 

0.2, 0.5, 2, 0.5, 0.1, 0.2, 0.1, 6.2p w rM K m f A R P          . 
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Fig. 15 Influence of   on temperature for 

0.2, 0.5, 2, 0.5, 0.1, 0.2, 0.1, 6.2p w i rM K m f A R B P         . 
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5. Conclusion 

In the present study, the effect of thermal radiation for MHD 3D flow of nanofluid past a 

shrinking surface has been thoroughly discussed and presented graphically. The specific 

conclusions derived from this study can be summarized as follows: 

The presence of the magnetic field and porous matrix thins hydrodynamic boundary layer 

and develops a thicker temperature boundary layer. Temperature in thermal boundary layer falls 

due to increase in the value of R and as a consequence the associated thermal boundary layer 

becomes thinner and thinner. Increase in the values of wall mass transfer parameter 
wf  

diminishes the velocity as well as the temperature profiles and thereby the momentum and 

thermal boundary layer shrink. The behavior of A is diametrically opposite to that of   

temperature distribution. 
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